- [4] C. Krawiecki, J. Michalski, R. A. Y. Jones & A. R. Katritzky, Rocz. Chem. 43, 869 (1965) W. Gerrard & H. R. Hudson in 'Organic Phosphorus Compounds', ed. G. M. Kosolapoff L. Maier, John Wiley and Sons, Inc., Vol. 5, 113 (1973).
- [5] W. E. Garwood, L. A. Hamilton & F. M. Seger, Ind. Eng. Chemistry 52, 401 (1960); U.S. Pe 2731458 (1956); L. Maier, in 'Topics in Current Chemistry' 19, 1 (1971).
- [6] C. Wu, J. Amer. chem. Soc., 87, 2522 (1965).
- [7] R. A. Dwek, R. E. Richards, D. Taylor, G. J. Penny & G. M. Sheldrick, J. chem. Soc. (A) 196 935.
- [8] R. P. Pinnel, C. A. Megerle, S. L. Manatt & P. A. Kroon, J. Amer. chem. Soc. 95, 977 (1973).
- [9] I. A. Nuretdinov & E. I. Liginova, Izv. Akad. Nauk, SSSR 1971, 2360.
- [10] W. J. Stec, A. Okruszek, B. Usnanski & J. Michalski, Phosphorus 2, 97 (1972).
- [11] W. McFarlane & D. S. Rycroft, J. chem. Soc. Dalton Trans., 1973, 2162.
- [12] W. McFarlane & J. A. Nash, Chem. Commun. 1969, 913.
- [13] V. Mark, C. H. Dungan, M. M. Crutchfield & J. R. Van Wazer, in "Topics in Phosphoru Chemistry', Vol. 5 (1967).
- [14] G. Mavel, in 'Annual Reports on NMR-Spectroscopy, Vol. 5B (1973).
- [15] M. L. Bird & F. Challenger, J. chem. Soc. 1942, 570.
- [16] I. D. Sadekov, L. M. Sayapina, A. Ya. Bushkov & V. I. Minkin, Žur. Obšč. Chim. 41, 271 (1971); Engl. transl., p. 2747.
- [17] J. W. Anderson, J. E. Drake, R. T. Hemmings & D. L. Nelson, Inorg. nucl. Chemistry Letters 17 233 (1975).

29. ¹⁵N Labelling: Potassium Azide, Tetrazoles and Imidazoles

by Curt Wentrup and (in part) Célestin Thétaz

Institut de Chimie Organique de l'Université, Rue de la Barre 2, 1005 Lausanne, Switzerland

(30. IV. 75)

Summary. A simplified high-yield preparation of end-labelled potassium azide from $K^{15}NO_{2}$ is described. Treatment of 4-chloropyrimidines with $K^{15}NN_{2}$ and subsequent gas-phase pyrolysis gives ring-labelled 1-cyanoimidazoles in 80–100% yields. The cyano-groups in the latter arc easily removed by hydrolysis.

¹⁵N labelling of *inter alia* heterocyclic compounds is of importance for the elucidation of chemical and biochemical reaction pathways. Such labellings usually require lenghty and/or expensive syntheses. A simple way to introduce ¹⁵N-labelled substituents in (hetero)aromatic molecules is *via* nucleophilic substitution with azide ion. Labelled azide is, however, very expensive and not widely distributed.

We now report a simple and inexpensive preparation of end-labelled potassium azide from commercial potassium nitrate, as well as its use in an efficient synthesis of ¹⁵N-labelled imidazoles.

1. Potassium Azide. End-labelled KN_3 has been prepared by Clusius & Hürzeler [1] by the sequence $NaNO_2 \rightarrow C_2H_5ONO \rightarrow KN_3$. The sodium nitrite was obtained by Clusius & Hoch [2] by reduction of KNO_3 with mercury. We have adopted these procedures for use with a standard vacuum line, and modified the reaction in such a way that the conversion of KNO_3 to KN_3 is a two-flask operation. The apparatus is shown in Fig. 1, and the procedure is described in detail in the Experimental Part. Commercial K¹⁵NO₃ is reduced to ¹⁵NO according to *Clusius* [2] in flask A. The ¹⁵NO is condensed into the side-arm H of flask G and allowed to react with the required amount of O₂. The ¹⁵N₂O₃ formed is again condensed into the side-arm H. Flask G is then detached, ethanol is added through the mouth K, the content of the side-arm H is allowed to evaporate, the ethyl nitrite formed is condensed back into the side-arm H, and a mixture of hydrazine hydrate and potassium methylate is added through K. Potassium [1-¹⁵N]-azide precipitates in a yield up to 77% and a purity of *ca.* 90%. Thus, the major reactions may be written:

The yields of subsequent reaction using this azide were usually as good as those obtained in test-runs with commercial unlabelled KN_3 .

2. Imidazoles from pyrimidines. 4-Chloropyrimidines (1) are converted with KN_3 under anhydrous conditions to tetrazolo[1,5-c]pyrimidines (2). The yields are 80-100%. Gas-phase pyrolysis of the tetrazoles (2) yields exclusively ring-labelled

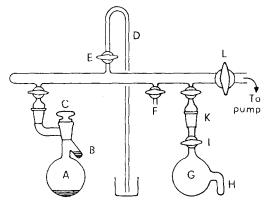
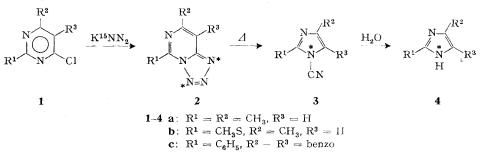



Fig. 1. Apparatus for production of K¹⁵NN₂

1-cyanoimidazoles (3) in yields of 99%. The mechanism of this reaction has been described elsewhere [3] [4]. The cyanoimidazoles (3) are easily hydrolyzed to imidazoles (4).

This transformation therefore represents a simple two-step ¹⁵N-labelling of imidazoles, with an overall yield of 80–100%. The rearrangement $2 \rightarrow 3$ also takes place in solution [4], but the yields are lower.

We gratefully acknowledge the financial support of the Schweizerische Nationalfonds zur Förderung der wissenschaftlichen Forschung (Projects No. 2.241.70 and 2.258.74).

Experimental Part

Potassium $[1-1^{5}N]$ -azide. – The apparatus (Fig. 1) requires a standard vacuum line and two specially constructed flasks, A and G. The volumes of flask A and G are *ca*. 500 ml for 2 g portions of KNO₃. The volumes of the side-arms B and H are *ca*. 20 and 10 ml, respectively.

2 g KNO₂ and 35.4 g Hg were placed in flask Λ . 9.3 ml conc. H₂SO₄ was carefully introduced into the arm B. The flask was evacuated, closed, and the content of arm B slowly added by tilting and shaking. After 2 h with occasional shaking flask A was attached to the vacuum line, the pressure of NO measured on the manometer D (C open, I closed), I opened, the NO condensed into H, and I closed. Pure oxygen was introduced through F (C and E open) and an amount corresponding to a quarter of the original NO pressure was admitted into flask G. After closing I, the content of H was allowed to evaporate. The brown gas formed was condensed back into H (blue liquid). The flask was detached, and 2.2 ml ethanol was added through the mouth K by gently opening I. (The ethanol may also be distilled into G via the vacuum line.) The content of H was vapourized and the colourless gas formed condensed back into H. A solution of 1.15 g potassium in 7 ml methanol, 14 ml ether, and 1.4 ml hydrazine hydrate was now added through K and I. The content of flask G became warm and colourless. After several hours, the precipitated KN_a was washed out with methanol/ether, filtered off, washed with methanol/ether, and dried in a desiccator. The yields of several preparations were 67-77%. The purity of the product was 88-94% by titration and IR. spectroscopy. The impurities were potassium nitrite and nitrate according to the IR. spectra.

[1(3)-¹⁵N]-5,7-Dimethyltetrazolo[1,5-c]pyrimidine (2a).4-Chloro-2,6-dimethylpyrimidine (297.5 mg; 2.085 mmol) and potassium [1-¹⁵N]-azide (50 atom-% ¹⁵N; 175.1 mg; 2.15 mmol) were mixed with 20 ml dry dimethylformamide in a 50 ml flask. The flask was stoppered, the stopper secured, and the mixture stirred magnetically at 80° for 22 h. After cooling and filtering, the solvent was distilled *in vacuo*, and the residue recrystallized from petroleum ether/benzene, yielding 250 mg (78% based on K¹⁵NN₂) of colourless prisms, m.p. 83-84° (lit. [5] 84-85°). The mass spectrum indicated 49.8% of one nitrogen atom as ¹⁶N.

 $[1-1^{5}N]-2$, 4-Dimethylimidazole-1-carbonitrile (**3a**). **2a** (191.3 mg; 1.28 mmol) was pyrolyzed [6] at 375°/0.05 Torr, being sublimed into the pyrolysis tube from a flask at 75° during 1 h. The product was dissolved in dry ether and the solvent evaporated, yielding 153.7 mg (99%) of **3a**, m.p. 63-64° (lit. [6] 63-64°), 24.8 atom-% ¹⁵N by mass spectrometry.

 $[1(3)^{-15}N]$ -2, 4-Dimethylimidazole (4a). A mixture of 3a (1 mmol) and 0.1 N NaOH (10 ml) was allowed to stand for 13 h. The product was isolated after neutralization with 0.1 N HCl, extraction with boiling CHCl₃, removal of the solvent, and drying *in vacuo*. The NMR. spectrum was identical with that of authentic 2,4-dimethylimidazole. The mass spectrum indicated 24 atom- $\frac{0}{70}$ ¹⁵N (one nitrogen atom labelled).

5-Phenyltetrazolo[1,5-c]quinazoline. A mixture of 4-chloro-2-phenylquinazoline (1c; 3.0 g; 12 mmol) and sodium azide (0.9 g; 14 mmol) in 125 ml absolute ethanol was heated in a closed vessel at 55-60° for 6 h with magnetic stirring, and then at 20° for a further 15 h. After removal of the solvent *in vacuo*, the residue was taken up in dry benzene, filtered off, and the filtrate evaporated. The resulting solid was washed with petroleum ether and recrystallized from methanol, yielding 3.0 g (97%), m.p. 162-163° (Lit. [7] 162-163°).

The labelled compound (2c) (90 atom-% ¹⁵N) was prepared in a similar manner from 1c and K¹⁵NN₂ (yield: *ca.* 80% on a 50 mg scale).

 $[1^{-15}N]$ -2-Phenylbenzimidazole-1-carbonitrile (**3c**). **2c** (39 mg; 0.16 mmol; 90 atom-% ¹⁵N) was pyrolyzed [6] at 450°/0.001 Torr, being sublimed in at 130–140°. The yield of **3c** was 34.3 mg (99%), m.p. 110° (45 atom-% ¹⁵N).

In a similar pyrolysis of unlabelled 2c (450 mg) the yield of 2-phenylbenzimidazole-1-carbonitrile was 99.9%; m.p. 110° (sharp); subl. 60° (0.001 Torr); very soluble in ether.

C14H2N3 (219.09) Calc. C 76.7 H 4.14 N 19.18% Found C 76.8 H 4.30 N 19.16%

2-Phenyl-[1(3)-¹⁶N]-benzimidazole (4c) was obtained in quantitative yield after heating 3c (30 mg) with 5 ml ln NaOH at 100° for 3 h. The product, extracted with ethyl acetate, had m.p. 305° (45 atom-% ¹⁶N). An unlabelled specimen prepared similarly was identical with an authentic sample [8].

REFERENCES

[1] K. Clusius & H. Hürzeler, Helv. 36, 1326 (1953).

[2] K. Clusius & M. Hoch, Helv. 33, 2122 (1950).

[3] C. Wentrup, C. Thétaz & R. Gleiter, Helv. 55, 2633 (1972).

[4] C. Wentrup, Top. Current Chem., in press.

[5] C. Wentrup, Tetrahedron 26, 4969 (1970).

[6] C. Wentrup & W. D. Crow, Tetrahedron 26, 4915 (1970).

[7] I. Ya. Postovskii, N. N. Vereshchagina & S. L. Mertsalov, Chim. Geterosikl. Soedin. 1966, 130.

[8] R. Walther & T. v. Pulawski, J. prakt. Chem. [2] 59, 249 (1899).

30. Tetrazoloazines. ¹⁵N Nuclear Magnetic Resonance and Infrared Absorption Spectroscopy

by Célestin Thétaz¹), F.W.Wehrli²) and Curt Wentrup³)

Institut de Chimie Organique de l'Université, Rue de la Barre 2, CH-1005 Lausanne, and NMR.-Applications Laboratory, Varian AG, CH-6300 Zug, Switzerland

(17. XII. 75)

Summary. The reaction of 4-chloro-2-phenylquinazoline with $K^{15}NN_2$ has been studied by ¹⁵N-NMR. spectroscopy. ¹⁵N-chemical shifts in 5-phenyl-1(3)-[¹⁵N]-tetrazolo[1, 5-c]quinazoline and $-N_{\alpha}(N_{\gamma})$ -[¹⁵N]-4-azido-2-phenylquinazoline are reported. The characteristic IR. absorption frequencies of the tetrazole group have been determined in a series of annelated ¹⁵N-labelled compounds. From these studies and the chemistry of the labelled tetrazoles, it is concluded that all haloazines examined react with KN₃ by the direct nucleophilic substitution mechanism. An addition of nucleophile-ring opening-ring closure (ANRORC) mechanism was not observed. The synthesis of several ¹⁵N-labelled tetrazoloazines is described.

The ready availability of ¹⁵N-labelled potassium azide [1] has allowed the synthesis of a number of labelled tetrazoloazines with the general formula **1**.

¹⁾ Université de Lausanne.

3) To whom correspondence should be addressed at the University of Lausanne.

²) Varian AG, NMR.-Applications Laboratory, Zug.